Building a Bridge to the Corn Ethanol Industry

Corn Stover to Ethanol Co-located at High Plains Corporation's York, Nebraska Site

Presented to the National Renewable Energy Laboratory by Merrick and Company February 4, 2000

Opening

- Partners
 - High Plains Corp. Existing corn to ethanol facility
 - PureVision Technologies Inc. Cellulase production technology
 - Merrick and Company Engineering and project management
- Scope Explore the business potential of producing fuel ethanol from corn stover.

Opening (cont.)

- Background
- Technical Facility Features
- Facility Performance
- Financial Results
- Recommendations for Further Study

Background

- Co-located site
 - 37.5 million gal/yr fuel ethanol from corn and milo
 - Dry mill process
 - Industrial grade ethanol production capabilities
 - Sufficient stover available for a 900 dry metric ton/day corn stover to ethanol facility

Background (cont.)

- NREL Lignocellulosic Model
 - 2000 dry metric ton/day yellow poplar sawdust to ethanol
 - Technical memorandum for corn stover
 - On-site cellulase production
 - Simultaneous saccharification and cofermentation

Background (cont.)

- Separation of Hydrolysis and Fermentation
- PureVision Cellulase Production Technology

Facility Features Block Flow Diagram Feedstock Handling Pretreatment Detoxification Cellulase Production Hydrolysis Fermentation Seed Production Co-fermentation Product Refinement Utilities Extent of Co-location Benefits

Facility Features • Block Flow Diagram • Feedstock Handling • Pretreatment • Detoxification • Cellulase Production • Hydrolysis • Fermentation Seed Production • Co-fermentation • Product Refinement • Utilities • Extent of Co-location Benefits

Facility Features Block Flow Diagram Feedstock Handling Pretreatment Detoxification Cellulase Production Hydrolysis Fermentation Seed Production Co-fermentation Product Refinement Utilities Extent of Co-location Benefits

Facility Performance

- 900 dry metric tons per day (555.5 million metric tons/yr)
- 25.7 million gallons of EtOH/yr
- Yield of 74.1 gallons/dry short ton (81.7 gallons/dry metric ton)

Financial Results

- Facility Cost: \$85,884,262
- \$/gal capacity: \$3.34
- Capital Cost (equipment) \$61,054,640
 As opposed to \$75,875,432 for reference model
- IRF
 - $-\sim$ -25% for \$35/dry short ton stover
 - 1% for base case (stover at \$14.45/dry short ton)

Recommendations for Further Work

- Feedstock Handling
- Pretreatment
- Detoxification
- Physical Properties
- Separation of Hydrolysis and Co-fermentation
- Cellulase Production
- Use of Stillage as a Nutrient

Summary

"While not economically attractive at this time, there are numerous areas for further work. When these issues are addressed, the economics will be much more attractive."